XMOS

Time Sensitive Networking Library

This library provides components for creating time sensitive networking and media transport applications.
In particular, it supports the various standards for Ethernet AVB (Audio Video Bridging).

Features

1722 61883-6 audio Talker and Listener (simultaneous) support
1722 MAAP support for Talkers

802.1Q MRP, MVRP, MSRP protocols

gPTP server and protocol

Media clock recovery and interface to PLL clock source

Support for 1722.1 AVDECC: ADP, AECP (AEM) and ACMP

Software version and dependencies

This document pertains to version 7.0.3 of this library. It is known to work on version 14.2.1 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

e lib_logging (>=2.0.0) e lib_ethernet (>=3.0.3)
e lib_xassert (>=2.0.0) e lib_otpinfo (>=2.0.0)
e lib_i2c (>=3.0.0)

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource
usage will depend on the particular use of the library by the application.

Configuration Pins | Ports Clocks | Ram Logical cores
Standalone gPTP server 0 0 0 ~10.1K | 1

Combined gPTP and media clock server 1 1 (1-bit) | O ~13.7K | 1

1722 Talker (1 stream, 8 channels, 48kHz) 0 0 0 ~4.5K 1

1722 Listener (1 stream, 8 channels, 48kHz) | O 0 0 ~8.5K 1

1722.1 and MAAP protocol stack 0 0 0 ~13.7K | 0/1

Stream Reservation Protocol stack 0 0 0 ~15.8K | 0/1

See the Ethernet MAC and 12S/TDM library documentation for their typical resource usage.

Related application notes

The following application notes use this library:

e AN00202 - XMOS Gigabit Ethernet AVB 12S demo app note
e AN00203 - XMOS Gigabit Ethernet AVB TDM demo app note

Copyright 2016 XMOS Ltd. 1 WWW.Xmos.com
XM006850

XMOS

1 Ethernet AVB standards

Ethernet AVB consists of a collection of different standards that together allow audio, video and time
sensitive control data to be streamed over Ethernet. The standards provide synchronized, uninterrupted
streaming with multiple talkers and listeners on a switched network infrastructure.

1.1 802.1AS

802.1AS defines a Precision Timing Protocol based on the IEEE 1558v2 protocol. It allows every device
connected to the network to share a common global clock. The protocol allows devices to have a syn-
chronized view of this clock to within microseconds of each other, aiding media stream clock recovery to
phase align audio clocks.

The IEEE 802.1AS-2011 standard document' is available to download free of charge via the IEEE Get
Program.

1.2 802.1Qav

802.1Qav defines a standard for buffering and forwarding of traffic through the network using partic-
ular flow control algorithms. It gives predictable latency control on media streams flowing through the
network.

The XMOS AVB solution implements the requirements for endpoints defined by 802.1Qav. This is done
by traffic flow control in the transmit arbiter of the Ethernet MAC component.

The 802.1Qav specification is available as a section in the IEEE 802.1Q-2011 standard document? and is
available to download free of charge via the IEEE Get Program.

1.3 802.1Qat

802.1Qat defines a stream reservation protocol that provides end-to-end reservation of bandwidth across
an AVB network.

The 802.1Qat specification is available as a section in the IEEE 802.1Q-2011 standard document3.

1.4 IEC61883-6
IEC 61883-6 defines an audio data format that is contained in IEEE 1722 streams. The XMOS AVB solution
uses IEC 61883-6 to convey audio sample streams.

The IEC 61883-6:2005 standard document” is available for purchase from the IEC website.

1.5 IEEE 1722
IEEE 1722 defines an encapsulation protocol to transport audio streams over Ethernet. It is complementary
to the AVB standards and in particular allows timestamping of a stream based on the 802.1AS global clock.

The XMOS AVB solution handles both transmission and receipt of audio streams using IEEE 1722. In
addition it can use the 802.1AS timestamps to accurately recover the audio master clock from an input
stream.

The IEEE 1722-2011 standard document® is available for purchase from the IEEE website.

Thttp://standards.ieee.org/getieee802/download/802.1AS-2011.pdf
2http://standards.ieee.org/getieee802/download/802.1Q-2011. pdf
3http://standards.ieee. org/getieee802/download/802.1Q-2011. pdf
“http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/46793
Shttp://standards.ieee.org/findstds/standard/1722-2011.htm]

Copyright 2016 XMOS Ltd. 2 WWW.Xmos.com
XM006850

http://standards.ieee.org/getieee802/download/802.1AS-2011.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/46793
http://standards.ieee.org/findstds/standard/1722-2011.html

XMOS

1.6 IEEE 1722.1

IEEE 1722.1 is a system control protocol, used for device discovery, connection management and enu-
meration and control of parameters exposed by the AVB endpoints.

The IEEE 1722.1-2013 standard document® is available for purchase from the IEEE website.

bhttp://standards.ieee.org/findstds/standard/1722.1-2013.htm1

Copyright 2016 XMOS Ltd. 3 WWW.Xmos.com
XM006850

http://standards.ieee.org/findstds/standard/1722.1-2013.html

XMOS

2 Usage

An AVB/TSN audio endpoint consists of five main interacting components:

The Ethernet MAC

The Precision Timing Protocol (PTP) engine
Audio streaming components

The media clock server

Configuration and other application components

The following diagram shows the top level structure of an AVB endpoint implemented on the xCORE

architecture.

A
Ethernet Ethernet \ Audio Audio
PHY MAC ' Interface Codec
Ethernet L] Audio
PHY Subsystem(s)
PTP
Server i -

App

GPIO
(UART/ SPI/
12C etc.)

2.1 Ethernet MAC
The XMOS Ethernet MAC library provides the necessary standards-compliant AVB support for an endpoint.

If 10/100 Mb/s support is required only, the 10/100 Mb/s real-time Ethernet MAC should be used. Gigabit
Ethernet is supported via the 10/100/1000 Mb/s real-time Ethernet MAC and will fallback to 10/100 Mb/s
operation on 10/100 networks.

For full usage and APl documentation, see the Ethernet MAC library user guide”.

“https://www.xmos.com/published/Tib_ethernet-userguide?version=latest

Copyright 2016 XMOS Ltd. 4 WWW.Xmos.com
XM006850

https://www.xmos.com/published/lib_ethernet-userguide?version=latest

XMOS

2.2 Precision Timing Protocol

The Precision Timing Protocol (PTP) enables a system with a notion of global time on a network. The TSN
library implements the IEEE 802.1AS protocol. It allows synchronization of the presentation and playback
rate of media streams across a network.

The PTP server requires a single logical core to run and connects to the Ethernet MAC. The library in-
terprets PTP packets from the Ethernet MAC and maintains a notion of global time. The maintenance of
global time requires no application interaction with the library.

The PTP library can be configured at runtime to be a potential PTP grandmaster or a PTP slave only. If the
library is configured as a grandmaster, it supplies a clock source to the network. If the network has several
grandmasters, the potential grandmasters negotiate between themselves to select a single grandmaster.
Once a single grandmaster is selected, all units on the network synchronize a global time from this source
and the other grandmasters stop providing timing information. Depending on the intermediate network,
this synchronization can be to sub-microsecond level resolution.

Client tasks connect to the timing component via xXCORE channels. The relationship between the local
reference counter and global time is maintained across this channel, allowing a client to timestamp with
a local timer very accurately and then convert it to global time, giving highly accurate global timestamps.

Client tasks can communicate with the server using the APl described in Section §3.6.

e The PTP system in the endpoint is self-configuring, it runs automatically and gives each endpoint an
accurate notion of a global clock.

e The global clock is not the same as the audio word clock, although it can be used to derive it. An
audio stream may be at a rate that is independent of the PTP clock but will contain timestamps that
use the global PTP clock domain as a reference.

2.3 Audio components

2.3.1 AVB streams, channels, talkers and listeners

Audio is transported in streams of data, where each stream may have multiple channels. Endpoints
producing streams are called Talkers and those receiving them are called Listeners. Each stream on the
network has a unique 64-bit stream ID.

A single endpoint can be a Talker, a Listener or both. In general each endpoint will have a number of sinks
with the capacity to receive a number of incoming streams and a number of sources with the capacity to
transmit a number of streams.

Routing is done using layer 2 Ethernet MAC addresses. The destination MAC address is a multicast
address so that several Listeners may receive it. In addition, AVB switches can reserve an end-to-end
path with guaranteed bandwidth for a stream. This is done by the Talker endpoint advertising the stream
to the switches and the Listener(s) registering to receive it. If sufficient bandwidth is not available, this
registration will fail.

Streams carry their own presentation time, the time that samples are due to be output, allowing multiple
Listeners that receive the same stream to output in sync.

Streams are encoded using the IEEE 1722 AVB transport protocol.

All channels in a stream must be synchronized to the same sample clock.

All the channels in a stream must come from the same Talker.

Routing of audio streams uses Ethernet layer 2 routing based on a multicast destination MAC address
Routing of channels is done at the stream level. All channels within a stream must be routed to
the same place. However, a stream can be multicast to several Listeners, each of which picks out
different channels.

Copyright 2016 XMOS Ltd. 5 WWW.Xmos.com
XM006850

XMOS

e A single endpoint can be both a Talker and Listener.

e Information such as stream ID and destination MAC address of a Talker stream should be commu-
nicated to Listeners via 1722.1. (see Section §2.5).

2.3.2 Internal routing and audio buffering

\
1722 Stream - 1 < media output FIFOs ——/——; 2 - audio out

-
1722 Stream- 3 <‘< media input FIFOs > 4 - audio in

As described in the previous section, an IEEE 1722 audio stream may consist of many channels. These
channels need to be routed to particular audio 1/0s on the endpoint. To achieve maximum flexibility the
XMOS design uses intermediate audio buffering to route audio.

The above figure shows the breakdown of 1722 streams into local FIFOs. The figure shows four points
where transitions to and from audio FIFOs occur. For audio being received by an endpoint:

1. When a 1722 stream is received, its channels are mapped to output audio FIFOs. This mapping can
be configured dynamically so that it can be changed at runtime by the configuration component.

2. The digital hardware interface maps audio FIFOs to audio outputs. This mapping is fixed and is
configured statically in the software.

For audio being transmitted by an endpoint:

1. The digital hardware interface maps digital audio inputs to a double buffer.
2. Several channels from this buffer can be combined into a 1722 stream. This mapping is dynamic.

The configuration of the mappings is handled through the API described in §3.4.

The audio buffering uses shared memory to move data between tasks, thus the filling and emptying of
the buffers must be on the same tile.

2.3.3 Talker units

A Talker unit consists of one logical core which creates IEEE 1722 packets and passes the audio samples
onto the MAC. Audio samples are passed to this component via a double buffer. The Talker task copies a
full buffer of samples into a 1722 packet while a different task implementing the audio hardware interface
writes to a second buffer. Once the second buffer is full, the buffers are swapped.

Sample timestamps are converted to the time domain of the global clock provided by the PTP library, and
a fixed offset is added to the timestamps to provide the presentation time of the samples (i.e the time at
which the sample should be played by a Listener).

The instantiating of Talker units is performed via the API described in Section §3.5. Once the Talker unit
starts, it registers with the main control task and is controlled via the main AVB API described in Section
§3.4.

Copyright 2016 XMOS Ltd. 6 WWW.Xmos.com
XM006850

XMOS

2.3.4 Listener units

from MAC output FIFOs

Listener —>

A Listener unit takes IEEE 1722 packets from the MAC and converts them into a sample stream to be fed
into a media FIFO. Each audio Listener component can listen to several IEEE 1722 streams.

A system may have several Listener units. The instantiating of Listener units is performed via the API
described in Section §3.5. Once the Listener unit starts, it registers with the main control task and is
controlled via the main AVB API described in Section §3.4.

2.3.5 Audio hardware interfaces

The audio hardware interface components drive external audio hardware, pull sample out of audio buffers
and push samples into audio buffers.

Different interfaces may interact in different ways; some directly push and pull from the audio buffers,
whereas some for performance reasons require samples to be provided over an XC channel.

2.4 Media clocks

A media clock controls the rate at which information is passed to an external audio device. For example,
an audio word clock that governs the rate at which samples should be passed to an audio CODEC.

A media clock can be synchronized to one of two sources:

e An incoming clock signal on a port.
e The word clock of a remote endpoint, derived from an incoming IEEE 1722 audio stream.

A hardware interface can be tied to a particular media clock, allowing the audio output from the XMOS
device to be synchronized with other devices on the network.

All media clocks are maintained by the media clock server component. This component maintains the
current state of all the media clocks in the system. It then periodically updates other components with
clock change information to keep the system synchronized. The set of media clocks is determined by an
array passed to the server at startup.

The media clock server component also receives information from the audio Listener component to track
timing information of incoming IEEE 1722 streams. It then sends control information back to ensure the
listening component honors the presentation time of the incoming stream.

Multiple media clocks require multiple hardware PLLs or sample rate conversion.
2.4.1 Driving an external clock generator

A high quality, low jitter master clock is often required to drive an audio CODEC and must be synchronized
with an AVB media clock. The xCORE architecture cannot provide the necessary quality of clock directly
but can provide a lower frequency input source for a frequency synthesizer chip or external PLL chip. The
frequency synthesizer chip must be able to generate a high frequency clock based on a lower frequency
signal, such as the Cirrus Logic CS2100-CP. The recommended configuration is as in the block diagram

Copyright 2016 XMOS Ltd. 7 WWW.Xmos.com
XM006850

XMOS

below:

XS1 belk, Irclk > CODEC

Device

A
< mclk

) FREQ
rate, ctl SYNTH

The xCORE device provides control to the frequency synthesizer and the frequency synthesizer provides
the audio master clock to the CODEC and xCORE device. The sample bit and word clocks are then provided
to the CODEC by the xCORE device.

2.5 Device Discovery, Connection Management and Control

2.5.1 The control task

In addition to components described in previous sections, an AVB endpoint application requires a task
to control and configure the system. This control task varies across applications but the protocol to
provide device discovery, connection management and control services has been standardized by the
IEEE in 1722.1.

2.5.2 1722.1

The 1722.1 standard defines four independent steps that can be used to connect end stations that use
1722 streams to transport media across a LAN. The steps are:

1. Discovery

2. Enumeration

3. Connection Management
4. Control

These steps can be used together to form a system of end stations that interoperate with each other in a
standards compliant way. The application that will use these individual steps is called a Controller and is
the third member in the Talker, Listener and Controller device relationship.

A Controller may exist within a Talker, a Listener, or exist remotely within the network in a separate
endpoint or general purpose computer.

The Controller can use the individual steps to find, connect and control entities on the network but it
may choose to not use all of the steps if the Controller already knows some of the information (e.g. hard
coded values assigned by user/hardware switch or values from previous session establishment) that can
be gained in using the steps. The only required step is connection management because this is the step
that establishes the bandwidth usage and reservations across the AVB network.

The four steps are broken down as follows:

Copyright 2016 XMOS Ltd. 8 WWW.Xmos.com
XM006850

XMOS

e Discovery is the process of finding AVB endpoints on the LAN that have services that are useful to
the other AVB endpoints on the network. The discovery process also covers the termination of the
publication of those services on the network.

e Enumeration is the process of the collection of information from the AVB endpoint that could help
an 1722.1 Controller to use the capabilities of the AVB endpoint. This information can be used for
connection management.

e Connection management is the process of connecting or disconnecting one or more streams be-
tween two or more AVB endpoint.

e Control is the process of adjusting a parameter on the endpoint from another endpoint. There are a
number of standard types of controls used in media devices like volume control, mute control and
so on. A framework of basic commands allows the control process to be extended by the endpoint.
The XMOS endpoint provides full support for Talker and Listener 1722.1 services. It is expected
that Controller software will be available on the network for handling connection management and
control.

2.5.3 1722.1 Descriptors

The XMOS AVB reference design provides an AVDECC Entity Model (AEM) consisting of descriptors to
describe the internal components of the Entity. For a complete overview of AEM, see section 7 of the
1722.1 specification.

An AEM descriptor is a fixed field structure followed by variable length data which describes an object in
the AEM Entity model. The maximum length of a descriptor is 508 octets.

All descriptors share two common fields which are used to uniquely identify a descriptor by a type and an
index. AEM defines a number of descriptors for specific parts of the Entity model. The descriptor types
that XMOS currently provide in the reference design are listed in the table below.

2.5.4 Editing descriptors

The descriptors are declared in the a header configuration file named aem_descriptors.h.in within the
src/ directory of the application. The XMOS Reference column in the table refers to the array names of
the descriptors in this file.

This file is post-processed by a script in the build stage to expand strings to 64 octet padded with zeros.

Copyright 2016 XMOS Ltd. 9 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3

Name

Description

XMOS Reference

ENTITY

CONFIGURATION

AUDIO_UNIT

STREAM_INPUT

STREAM_OUTPUT

JACK_INPUT

JACK_OUTPUT

AVB_INTERFACE

CLOCK_SOURCE

LOCALE

STRINGS

STREAM_PORT_INPUT

STREAM_PORT_OUTPUT

EXTERNAL_PORT_INPUT

EXTERNAL_PORT_OUTPUT

AUDIO_CLUSTER

AUDIO_MAP

CLOCK_DOMAIN

This is the top level descriptor
defining the Entity.

This is the descriptor defining a
configuration of the Entity.

This is the descriptor defining an
audio unit.

This is the descriptor defining an
input stream to the Entity.

This is the descriptor defining an
output stream from the Entity.

This is the descriptor defining an
input jack on the Entity.

This is the descriptor defining an
output jack on the Entity.

This is the descriptor defining an AVB
interface.

This is the descriptor describing a
clock source.

This is the descriptor defining a
locale.

This is the descriptor defining
localized strings.

This is the descriptor defining an
input stream port on a unit.

This is the descriptor defining an
output stream port on a unit.

This is the descriptor defining an
input external port on a unit.

This is the descriptor defining an
output external port on a unit.

This is the descriptor defining a
cluster of channels within an audio
stream.

This is the descriptor defining the
mapping between the channels of an
audio stream and the channels of the
audio port.

This is the descriptor describing a
clock domain.

desc_entity
desc_configuration_0
desc_audio_unit_0
desc_stream_input_0
desc_stream_output_0
desc_jack_input_0
desc_jack_output_0
desc_avb_interface_0
desc_clock_source_0..1
desc_locale_0
desc_strings_0
desc_stream_port_input_0
desc_stream_port_output_0
desc_external_input_port_0
desc_external_output_port_0

desc_audio_cluster_0..N

desc_audio_map_0..N

desc_clock_domain_0

2.5.5 Adding and removing descriptors

Descriptors are

indexed
aem_descriptors.h.1in file.

by a descriptor list named

The format for this list is as follows:

aem_descriptor_list in the

Copyright 2016 XMOS Ltd.

WWW.XmMOos.com
XM006850

XMOS

TSN 7.0.3

For example:

AEM_ENTITY_TYPE, 1, sizeof(desc_entity), (unsigned)desc_entity

Descriptor type

Number of descriptors of type (N)
Size of descriptor 0 (bytes)
Address of descriptor 0

Size of descriptor N (bytes)
Address of descriptor N

Copyright 2016 XMOS Ltd.

WWW.XmMOos.com
XM006850

XMOS

3 API

TSN 7.0.3

All AVB/TSN functions can be accessed via the avb.h header:

#include <avb.h>
You will also have to add Tib_tsn to the USED_MODULES field of your application Makefile.

3.1 Audio subsystem defines

AVB applications using the TSN library must include a header configuration file named avb_conf.h within
the src/ directory of the application and this file must set the following values with #defines.

Macro AVB_MAX_AUDIO_SAMPLE_RATE

Description | The maximum sample rate in Hz of audio that is to be input or output.

Macro AVB_NUM_SOURCES

Description | The total number of AVB sources (streams that are to be transmitted).

Macro AVB_NUM_TALKER_UNITS

Description | The total number or Talker components (typically the number of tasks running the
avb_1722_talker function).

Macro AVB_MAX_CHANNELS_PER_TALKER_STREAM

Description | The maximum number of channels permitted per 1722 Talker stream.

Macro AVB_NUM_MEDIA_INPUTS

Description | The total number of media inputs (typically number of 12S input channels).

Macro AVB_NUM_SINKS

Description | The total number of AVB sinks (incoming streams that can be listened to).

Macro AVB_NUM_LISTENER_UNITS

Description | The total number or listener components (typically the number of tasks running the
avb_1722_11istener function).

Copyright 2016 XMOS Ltd. 12

WWW.XmMOos.com
XM006850

XMOS

TSN 7.0.3

Macro AVB_MAX_CHANNELS_PER_LISTENER_STREAM

Description | The maximum number of channels permitted per 1722 Listener stream.

Macro AVB_NUM_MEDIA_OUTPUTS

Description | The total number of media outputs (typically the number of 12S output channels).

Macro AVB_NUM_MEDIA_UNITS

Description | The number of components in the endpoint that will register and initialize media
FIFOs (typically an audio interface component such as 12S).

Macro AVB_NUM_MEDIA_CLOCKS

Description | The number of media clocks in the endpoint.
Typically the number of clock domains, each with a separate PLL and master clock.

3.2 1722.1

Macro AVB_ENABLE_1722_1

Description | Enable 1722.1 AVDECC on the entity.

Macro AVB_1722_1_TALKER_ENABLED

Description | Enable the 1722.1 Talker functionality.

Macro AVB_1722_1_LISTENER_ENABLED

Description | Enable the 1722.1 Listener functionality.

Macro AVB_1722_1_CONTROLLER_ENABLED

Description | Enable 1722.1 Controller functionality on the entity.

Descriptor specific strings can be modified in a header configuration file named aem_entity_strings.h.in
within the src/ directory. It is post-processed by a script in the build stage to expand strings to 64 octet
padded with zeros.

Copyright 2016 XMOS Ltd. 13

WWW.XmMOos.com
XM006850

XMOS

Define Description

AVB_1722_1_ENTITY_NAME_STRING A string (64 octet max) containing an Entity name

AVB_1722_1_FIRMWARE_VERSION_STRING A string (64 octet max) containing the firmware version
of the Entity

AVB_1722_1_GROUP_NAME_STRING A string (64 octet max) containing the group name of the
Entity

AVB_1722_1_SERTAL_NUMBER_STRING A string (64 octet max) containing the serial number of
the Entity

AVB_1722_1_VENDOR_NAME_STRING A string (64 octet max) containing the vendor name of
the Entity

AVB_1722_1_MODEL_NAME_STRING A string (64 octet max) containing the model name of the
Entity

3.3 1722.1 application hooks

These hooks are called on events that can be acted upon by the application. They can be overridden by
user defined hooks of the same name to perform custom functionality not present in the core stack.

Function avb_talker_on_listener_connect

Description | A Controller has indicated that a Listener is connecting to this Talker stream source.

Type void

avb_talker_on_Tlistener_connect(
client interface avb_interface i_avb,
int source_num,
const_guid_ref_t listener_guid)

Parameters | i_avb client interface of type avb_interface into avb_manager()

source_num
The local id of the Talker stream source

Tistener_guid
The GUID of the Listener entity that is connecting

Function avb_talker_on_listener_disconnect

Description | A Controller has indicated that a Listener is disconnecting from this Talker stream
source.

Type void

avb_talker_on_Tlistener_disconnect(
client interface avb_interface i_avb,
int source_num,
const_guid_ref_t listener_guid,
int connection_count)

Continued on next page
. __|
Copyright 2016 XMOS Ltd. 14 WWW.Xmos.com
XM006850

XMOS

Parameters | i_avb client interface of type avb_interface into avb_manager()

source_num
The local id of the Talker stream source

Tistener_guid
The GUID of the Listener entity that is disconnecting

connection_count
The number of connections a Talker thinks it has on it’s stream source,
i.e. the number of connect TX stream commands it has received less
the number of disconnect TX stream commands it has received. This
number may not be accurate since an AVDECC Entity may not have sent
a disconnect command if the cable was disconnected or the AVDECC
Entity abruptly powered down.

Function avb_listener_on_talker_connect
Description | A Controller has indicated to connect this Listener sink to a Talker stream.

Type avb_1722_1_acmp_status_t
avb_Tistener_on_talker_connect(
client interface avb_interface i_avb,
int sink_num,
const_guid_ref_t talker_guid,
unsigned char dest_addr[6],
unsigned int stream_id[2],
unsigned short vlan_id,
const_guid_ref_t my_guid)

Parameters | i_avb client interface of type avb_interface into avb_manager()
sink_num The local id of the Listener stream sink

talker_guid
The GUID of the Talker entity that is connecting

dest_addr The destination MAC address of the Talker stream
stream_id The 64 bit Stream ID of the Talker stream
vlan_id The VLAN ID of the Talker stream

my_guid The GUID of this entity

Copyright 2016 XMOS Ltd. 15 WWW.Xmos.com
XM006850

XMOS

Function

avb_listener_on_talker_disconnect

Description

A Controller has indicated to disconnect this Listener sink from a Talker stream.

Type

void

avb_Tistener_on_talker_disconnect(
client interface avb_interface i_avb,
int sink_num,
const_guid_ref_t talker_guid,
unsigned char dest_addr[6],
unsigned int stream_id[2],
const_guid_ref_t my_guid)

Parameters

i_avb client interface of type avb_interface into avb_manager()
sink_num The local id of the Listener stream sink

talker_guid
The GUID of the Talker entity that is disconnecting

dest_addr The destination MAC address of the Talker stream
stream_id The 64 bit Stream ID of the Talker stream

my_guid The GUID of this entity

Type

avb_1722_1_aecp_aem_status_code

Description

The result status of the AEM command in the response field.

Values

AECP_AEM_STATUS_SUCCESS
The AVDECC Entity successfully performed the command and has valid
results.

AECP_AEM_STATUS_NOT_IMPLEMENTED
The AVDECC Entity does not support the command type.

AECP_AEM_STATUS_NO_SUCH_DESCRIPTOR
A descriptor with the descriptor_type and descriptor_index specified
does not exist.

AECP_AEM_STATUS_ENTITY_LOCKED
The AVDECC Entity has been locked by another AVDECC Controller.

AECP_AEM_STATUS_ENTITY_ACQUIRED
The AVDECC Entity has been acquired by another AVDECC Controller.

Continued on next page

Copyright 2016 XMOS Ltd. 16 WWW.Xmos.com

XM006850

XMOS

AECP_AEM_STATUS_NOT_AUTHENTICATED
The AVDECC Controller is not authenticated with the AVDECC Entity.

AECP_AEM_STATUS_AUTHENTICATION_DISABLED
The AVDECC Controller is trying to use an authentication command
when authentication isn’t enable on the AVDECC Entity.

AECP_AEM_STATUS_BAD_ARGUMENTS
One or more of the values in the fields of the frame were deemed to be
bad by the AVDECC Entity (unsupported, incorrect combination, etc).

AECP_AEM_STATUS_NO_RESOURCES
The AVDECC Entity cannot complete the command because it does not
have the resources to support it.

AECP_AEM_STATUS_IN_PROGRESS
The AVDECC Entity is processing the command and will send a second
response at a later time with the result of the command.

AECP_AEM_STATUS_ENTITY_MISBEHAVING
The AVDECC Entity is generated an internal error while trying to process
the command.

AECP_AEM_STATUS_NOT_SUPPORTED
The command is implemented but the target of the command is not
supported.

For example trying to set the value of a read-only Control.

AECP_AEM_STATUS_STREAM_IS_RUNNING
The Stream is currently streaming and the command is one which cannot
be executed on an Active Stream.

Type avb_1722_1_control_callbacks

Description | A callback interface for 1722.1 events.

Continued on next page

Copyright 2016 XMOS Ltd. 17 WWW.Xmos.com
XM006850

XMOS

Type avb_1722_1_control_callbacks (continued)
Functions
Function get_control_value
Description This function events on a GET_CONTROL 1722.1 command re-

ceived from a Controller.

Type unsigned char

get_control_value(unsigned short control_index,
unsigned int &value_size,
unsigned short &values_length,
unsigned char values[])

Parameters control_index
the index of the CONTROL descriptor

value_size
the size in bytes of the type of the value

values_Tlength
a reference to the length in bytes of the values
array

values an array of values to return to the Controller The
contents of this field are dependent on the Con-
trol being fetched.

Returns an AEM status code of enum
avb_1722_1_aecp_aem_status_code for the GET_CONTROL
response

Continued on next page

Copyright 2016 XMOS Ltd. 18 WWW.Xmos.com
XM006850

XMOS

Type avb_1722_1_control_callbacks (continued)
Function set_control_value
Description This function events on a SET_CONTROL 1722.1 command re-

ceived from a Controller.

The response should always contain the current value (i.e. it
contains the new value if the commands succeeds, or the old
value if it fails)

Type unsigned char

set_control_value(unsigned short control_index,
unsigned short values_length,
unsigned char values[])

Parameters control_index
the index of the CONTROL descriptor

values_Tlength
the length in bytes of the values array

values an array of values to set from the Controller. The
contents of this field are dependent on the Con-
trol being addressed.

Returns an AEM status code of enum
avb_1722_1_aecp_aem_status_code for the SET_CONTROL
response

Continued on next page

Copyright 2016 XMOS Ltd. 19 WWW.Xmos.com
XM006850

XMOS

Type avb_1722_1_control_callbacks (continued)
Function get_signal_selector
Description This function events on a GET_SIGNAL_SELECTOR 1722.1 com-

mand received from a Controller.

Type unsigned char

get_signal_selector(unsigned short selector_index,
unsigned short &signal_type,
unsigned short &signal_index,
unsigned short &signal_output)

Parameters selector_index
the index of the SIGNAL_SELECTOR descriptor

signal_type
a reference to the descriptor type of signal source
for the selector

signal_index
a reference to the descriptor index of signal
source for the selector

signal_output
areference to the index of the output of the signal
source of the selector

Returns an AEM status code of enum
avb_1722_1_aecp_aem_status_code for the
GET_SIGNAL_SELECTOR response

Continued on next page

Copyright 2016 XMOS Ltd. 20 WWW.Xmos.com
XM006850

XMOS

Type avb_1722_1_control_callbacks (continued)
Function set_signal_selector
Description This function events on a SET_SIGNAL_SELECTOR 1722.1 com-

mand received from a Controller.

Type unsigned char

set_signal_selector(unsigned short selector_index,
unsigned short signal_type,
unsigned short signal_index,
unsigned short signal_output)

Parameters selector_index
the index of the SIGNAL_SELECTOR descriptor

signal_type
the descriptor type of signal source for the selec-
tor

signal_index
the descriptor index of signal source for the se-
lector

signal_output
the index of the output of the signal source of the

selector
Returns an AEM status code of enum
avb_1722_1_aecp_aem_status_code for the

SET_SIGNAL_SELECTOR response

Copyright 2016 XMOS Ltd. 21 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3

3.4 AVB Control API

Type avb_stream_format_t
Description | The audio format of a 1722 Talker or Listener.
Values AVB_FORMAT_MBLA_24BIT
24bit MBLA
Type avb_source_state_t
Description | The state of an AVB source (Talker).
Values AVB_SOURCE_STATE_DISABLED
The source is disabled and will not transmit.
AVB_SOURCE_STATE_POTENTIAL
The source is enabled and will transmit if a listener requests it.
AVB_SOURCE_STATE_ENABLED
The source is enabled and transmitting.
Type avb_sink_state_t
Description | The state of an AVB sink (Listener).
Values AVB_SINK_STATE_DISABLED
The sink is disabled.
AVB_SINK_STATE_POTENTIAL
The sink is enabled and will pass audio when a Talker requests it.
AVB_SINK_STATE_ENABLED
The sink is enabled and passing audio.
Type device_media_clock_type_t
Description | The type of source to use as a media clock.
Values DEVICE_MEDIA_CLOCK_INPUT_STREAM_DERIVED
The clock is sourced from the media clock of an Input Stream.
Continued on next page
Copyright 2016 XMOS Ltd. 22 WWW.Xmos.com

XM006850

XMOS

DEVICE_MEDIA_CLOCK_LOCAL_CLOCK
The clock is sourced from within the entity from the local crystal oscil-
lator.

Type device_media_clock_state_t

Description | The state of a media clock.

Values DEVICE_MEDIA_CLOCK_STATE_DISABLED
The media clock is disabled.

DEVICE_MEDIA_CLOCK_STATE_ENABLED
The media clock is enabled.

Type avb_interface

Description | The core AVB interface API for interacting with the endpoint.

Functions

Function _get_source_info

Description Intended for internal use within client interface get and set ex-
tensions only.

Type avb_source_info_t
_get_source_info(unsigned source_num)

Function _set_source_info

Description Intended for internal use within client interface get and set ex-
tensions only.

Type void
_set_source_info(unsigned source_num,
avb_source_info_t info)

Function _get_sink_info

Description Intended for internal use within client interface get and set ex-
tensions only.

Type avb_sink_info_t _get_sink_info(unsigned sink_num)

Continued on next page

Copyright 2016 XMOS Ltd. 23 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3
Type avb_interface (continued)
Function _set_sink_info
Description Intended for internal use within client interface get and set ex-
tensions only.
Type void _set_sink_info(unsigned sink_num,
avb_sink_info_t info)
Function _get_media_clock_info
Description Intended for internal use within client interface get and set ex-
tensions only.
Type media_clock_info_t
_get_media_clock_info(unsigned clock_num)
Function _set_media_clock_info
Description Intended for internal use within client interface get and set ex-
tensions only.
Type void
_set_media_clock_info(unsigned clock_num,
media_clock_info_t info)
Function get_source_format
Description Get the format of an AVB source.
Type int
get_source_format(unsigned source_num,
enum avb_stream_format_t &format,
int &rate)
Parameters source_num
the local source number
format the format of the stream
rate the sample rate of the stream in Hz

Continued on next page

Copyright 2016 XMOS Ltd. 24

WWW.XmMOos.com
XM006850

XMOS

Type avb_interface (continued)
Function set_source_format
Description Set the format of an AVB source.

The AVB source format covers the encoding and sample rate of
the source. Currently the format is limited to a single encoding
MBLA 24 bit signed integers.

This setting will not take effect until the next time the source
state moves from disabled to potential.

Type int

set_source_format(unsigned source_num,
enum avb_stream_format_t format,
int rate)

Parameters source_num
the local source number

format the format of the stream

rate the sample rate of the stream in Hz
Function get_source_channels
Description Get the channel count of an AVB source.
Type int

get_source_channels(unsigned source_num,
int &channels)

Parameters source_num
the local source number

channels the number of channels

Continued on next page

Copyright 2016 XMOS Ltd. 25 WWW.Xmos.com
XM006850

XMOS

Type avb_interface (continued)
Function set_source_channels
Description Set the channel count of an AVB source.

Sets the number of channels in the stream.
This setting will not take effect until the next time the source
state moves from disabled to potential.

Type int
set_source_channels(unsigned source_num,
int channels)

Parameters source_num
the local source number

channels the number of channels

Function get_source_sync

Description Get the media clock of an AVB source.

Type int get_source_sync(unsigned source_num, int &sync)
Parameters source_num

the local source number

sync the media clock number
Function set_source_sync
Description Set the media clock of an AVB source.

Sets the media clock of the stream.

Type int set_source_sync(unsigned source_num, int sync)

Parameters source_num
the local source number

sync the media clock number

Continued on next page

Copyright 2016 XMOS Ltd. 26 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3
Type avb_interface (continued)
Function get_source_presentation
Description Get the presentation time offset of an AVB source.
Type int
get_source_presentation(unsigned source_num,
int &presentation)
Parameters source_num
the local source number to set
presentation
the presentation offset in ms
Function set_source_presentation
Description Set the presentation time offset of an AVB source.
Sets the presentation time offset of a source i.e. the time after
sampling that the stream should be played. The default value
for this is 2ms.
This setting will not take effect until the next time the source
state moves from disabled to potential.
Type int
set_source_presentation(unsigned source_num,
int presentation)
Parameters source_num
the local source number to set
presentation
the presentation offset in ms
Function get_source_vlan
Description Get the destination vlan of an AVB source.
Type int get_source_vlan(unsigned source_num, int &vlan)
Parameters source_num
the local source number
vlan the destination vlan id

Continued on next page

Copyright 2016 XMOS Ltd. 27

WWW.XmMOos.com
XM006850

XMOS

TSN 7.0.3
Type avb_interface (continued)
Function set_source_vlan
Description Set the destination vlan of an AVB source.
Sets the vlan that the source will transmit on. This defaults to
2.
This setting will not take effect until the next time the source
state moves from disabled to potential.
Type int set_source_vlan(unsigned source_num, int vlan)
Parameters source_num
the local source number
vlan the destination vlan id
Function get_source_state
Description Get the current state of an AVB source.
Type int
get_source_state(unsigned source_num,
enum avb_source_state_t &state)
Parameters source_num
the local source number
state the state of the source
Function set_source_state
Description Set the current state of an AVB source.
Sets the current state of an AVB source. You can-
not set the state to ENABLED. Changing the state to
AVB_SOURCE_STATE_POTENTIAL turns the stream on and it will
automatically change to ENABLED when connected to a listener
and streaming.
Type int
set_source_state(unsigned source_num,
enum avb_source_state_t state)
Parameters source_num
the local source number
state the state of the source

Continued on next page

Copyright 2016 XMOS Ltd. 28

WWW.XmMOos.com
XM006850

XMOS

Type avb_interface (continued)
Function get_source_map
Description Get the channel map of an avb source.
Type int get_source_map(unsigned source_num,
int map[],
int &len)
Parameters source_num
the local source number to set
map the map, an array of integers giving the input FI-
FOs that make up the stream
Ten the length of the map; should be equal to the
number of channels in the stream
Function set_source_map
Description Set the channel map of an avb source.

Sets the channel map of a source i.e. the list of input FIFOs that
constitute the stream.

This setting will not take effect until the next time the source
state moves from disabled to potential.

Type int set_source_map(unsigned source_num,
int map[len],
unsigned len)

Parameters source_num
the local source number to set

map the map, an array of integers giving the input FI-
FOs that make up the stream

Ten the length of the map; should be equal to the
number of channels in the stream

Continued on next page

Copyright 2016 XMOS Ltd. 29 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3
Type avb_interface (continued)
Function get_source_dest
Description Get the destination address of an avb source.
Type int get_source_dest(unsigned source_num,
unsigned char addr[],
int &len)
Parameters source_num
the local source number
addr the destination address as an array of 6 bytes
Ten the length of the address, should always be equal
to 6
Function set_source_dest
Description Set the destination address of an avb source.
Sets the destination MAC address of a source. This setting will
not take effect until the next time the source state moves from
disabled to potential.
Type int set_source_dest(unsigned source_num,
unsigned char addr[len],
unsigned len)
Parameters source_num
the local source number
addr the destination address as an array of 6 bytes
Ten the length of the address, should always be equal
to 6
Function get_source_id
Description
Type int get_source_id(unsigned source_num,
unsigned int id[2])

Continued on next page

Copyright 2016 XMOS Ltd. 30

WWW.XmMOos.com
XM006850

XMOS

TSN 7.0.3

Type

avb_interface (continued)

Function get_sink_id
Description Get the stream id that an AVB sink listens to.
Type int get_sink_id(unsigned sink_num,
unsigned int stream_id[2])

Parameters sink_num the number of the sink

stream_id int array containing the 64-bit of the stream
Function set_sink_id
Description Set the stream id that an AVB sink listens to.

Sets the stream id that an AVB sink listens to.

This setting will not take effect until the next time the sink state

moves from disabled to potential.
Type int set_sink_id(unsigned sink_num,

unsigned int stream_id[2])

Parameters sink_num the number of the sink

stream_id int array containing the 64-bit of the stream
Function get_sink_format
Description Get the format of an AVB sink.
Type int get_sink_format(unsigned sink_num,

enum avb_stream_format_t &format,
int &rate)

Parameters sink_num the local sink number

format the format of the stream

rate the sample rate of the stream in Hz

Continued on next page

Copyright 2016 XMOS Ltd.

31 WWW.XMO0S.com

XM006850

XMOS

TSN 7.0.3

Type avb_interface (continued)
Function set_sink_format
Description Set the format of an AVB sink.
The AVB sink format covers the encoding and sample rate of
the sink. Currently the format is limited to a single encoding
MBLA 24 bit signed integers.
This setting will not take effect until the next time the sink state
moves from disabled to potential.
Type int set_sink_format(unsigned sink_num,
enum avb_stream_format_t format,
int rate)
Parameters sink_num the local sink number
format the format of the stream
rate the sample rate of the stream in Hz
Function get_sink_channels
Description Get the channel count of an AVB sink.
Type int get_sink_channels(unsigned sink_num,
int &channels)
Parameters sink_num the local sink number
channels the number of channels
Function set_sink_channels
Description Set the channel count of an AVB sink.
Sets the number of channels in the stream.
This setting will not take effect until the next time the sink state
moves from disabled to potential.
Type int set_sink_channels(unsigned sink_num,
int channels)
Parameters sink_num the local sink number
channels the number of channels

Continued on next page

Copyright 2016 XMOS Ltd. 32

WWW.XmMOos.com
XM006850

XMOS

TSN 7.0.3

Type avb_interface (continued)
Function get_sink_sync
Description Get the media clock of an AVB sink.
Type int get_sink_sync(unsigned sink_num, int &sync)
Parameters sink_num the local sink number
sync the media clock number
Function set_sink_sync
Description Set the media clock of an AVB sink.
Sets the media clock of the stream.
Type int set_sink_sync(unsigned sink_num, int sync)
Parameters sink_num the local sink number
sync the media clock number
Function get_sink_vlan
Description Get the virtual lan id of an AVB sink.
Type int get_sink_vlan(unsigned sink_num, int &vlan)
Parameters sink_num the number of the sink
vlan the vlan id of the sink
Function set_sink_vlan
Description Set the virtual lan id of an AVB sink.
Sets the vlan id of the incoming stream.
This setting will not take effect until the next time the sink state
moves from disabled to potential.
Type int set_sink_vlan(unsigned sink_num, int vlan)
Parameters sink_num the number of the sink
vlan the vlan id of the sink

Continued on next page

Copyright 2016 XMOS Ltd. 33

WWW.XmMOos.com
XM006850

XMOS

TSN 7.0.3

Type avb_interface (continued)
Function get_sink_addr
Description Get the incoming destination mac address of an avb sink.
Type int get_sink_addr(unsigned sink_num,
unsigned char addr[],
int &len)
Parameters sink_num The local sink number
addr The mac address as an array of 6 bytes.
Ten The length of the address, should always be equal
to 6.
Function set_sink_addr
Description Set the incoming destination mac address of an avb sink.
Set the incoming destination mac address of a sink. This needs
to be set if the address is a multicast address so the endpoint
can register for that multicast group with the switch.
This setting will not take effect until the next time the sink state
moves from disabled to potential.
Type int set_sink_addr(unsigned sink_num,
unsigned char addr[Tlen],
unsigned Ten)
Parameters sink_num The local sink number
addr The mac address as an array of 6 bytes.
Ten The length of the address, should always be equal
to 6.
Function get_sink_state
Description Get the state of an AVB sink.
Type int get_sink_state(unsigned sink_num,
enum avb_sink_state_t &state)
Parameters sink_num the number of the sink
state the state of the sink

Continued on next page

Copyright 2016 XMOS Ltd. 34

WWW.XmMOos.com
XM006850

XMOS

Type avb_interface (continued)
Function set_sink_state
Description Set the state of an AVB sink.

Sets the current state of an AVB sink. You cannot set the state
to ENABLED. Changing the state to POTENTIAL turns the stream
on and it will automatically change to ENABLED when connected
to a talker and receiving samples.

Type int set_sink_state(unsigned sink_num,
enum avb_sink_state_t state)

Parameters sink_num the number of the sink
state the state of the sink
Function get_sink_map
Description Get the map of an AVB sink.
Type int get_sink_map(unsigned sink_num,
int map[],
int &len)
Parameters sink_num the number of the sink
map array containing the media output FIFOs that the

stream will be split into

Ten the length of the map; should equal to the num-
ber of channels in the stream

Continued on next page

Copyright 2016 XMOS Ltd. 35 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3

Type avb_interface (continued)
Function set_sink_map
Description Set the map of an AVB sink.
Sets the map i.e. the mapping from the 1722 stream to output
FIFOs.
This setting will take affect immediately.
Type int set_sink_map(unsigned sink_num,
int map[len],
unsigned len)
Parameters sink_num the number of the sink
map array containing the media output FIFOs that the
stream will be split into
Ten the length of the map; should equal to the num-
ber of channels in the stream
Function get_device_media_clock_rate
Description Get the rate of a media clock.
Type int
get_device_media_clock_rate(int clock_num,
int &rate)
Parameters clock_num the number of the media clock
rate the rate of the clock in Hz
Function set_device_media_clock_rate
Description Set the rate of a media clock.
Sets the rate of the media clock.
Type int
set_device_media_clock_rate(int clock_num,
int rate)
Parameters clock_num the number of the media clock
rate the rate of the clock in Hz

Continued on next page

Copyright 2016 XMOS Ltd. 36

WWW.XmMOos.com
XM006850

XMOS

Type avb_interface (continued)
Function get_device_media_clock_state
Description Get the state of a media clock.
Type int

get_device_media_clock_state(int clock_num,
enum device_media_clock_state_t &state)

Parameters clock_num the number of the media clock
state the state of the clock

Function set_device_media_clock_state

Description Set the state of a media clock.

This function can be used to enabled/disable a media clock.

Type int
set_device_media_clock_state(int clock_num,
enum device_media_clock_state_t state)

Parameters clock_num the number of the media clock
state the state of the clock

Function get_device_media_clock_source

Description Get the source of a media clock.

Type int

get_device_media_clock_source(int clock_num,
int &source)

Parameters clock_num the number of the media clock

source the output FIFO number to base the clock on

Continued on next page

Copyright 2016 XMOS Ltd. 37 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3

Type

avb_interface (continued)

Function set_device_media_clock_source
Description Set the source of a media clock.
For clocks that are derived from an output FIFO. This function
gets/sets which FIFO the clock should be derived from.
Type int
set_device_media_clock_source(int clock_num,
int source)
Parameters clock_num the number of the media clock
source the output FIFO number to base the clock on
Function get_device_media_clock_type
Description Get the type of a media clock.
Type int
get_device_media_clock_type(int clock_num,
enum device_media_clock_type_t &clock_type)
Parameters clock_num the number of the media clock
clock_type
the type of the clock
Function set_device_media_clock_type
Description Set the type of a media clock.
Type int
set_device_media_clock_type(int clock_num,
enum device_media_clock_type_t clock_type)
Parameters clock_num the number of the media clock

clock_type
the type of the clock

Copyright 2016 XMOS Ltd.

38 WWW

.Xmos.com
XM006850

XMOS

3.5 Core components

Function avb_manager

Description | Core AVB APl management task that can be combined with other AVB tasks such as
SRP or 1722.1.

Type [[combinable]]
void
avb_manager(server interface avb_interface i_avb[num_avb_clients],
unsigned num_avb_clients,
client interface srp_interface ?i_srp,
chanend c_media_ctl1[],
chanend(& ?c_Tlistener_ct1)[],
chanend(& ?c_talker_ct1)[],
client interface ethernet_cfg_if i_eth_cfg,
client interface media_clock_if ?i_media_clock_ct1)

Parameters | i_avb[] array of avb_interface server interfaces connected to clients of
avb_manager

num_avb_clients
number of client interface connections to the server and the number of
elements of i_avb([]

i_srp client interface of type srp_interface into an srp_task() task

c_media_ct1[]
array of chanends connected to components that register/control media
FIFOs

c_listener_ctl1[]
array of chanends connected to components that register/control IEEE
1722 sinks

c_talker_ct1[]
array of chanends connected to components that register/control IEEE
1722 sources

i_eth_cfg a client interface of type ethernet_cfg_if for Ethernet MAC configuration
i_media_clock_ct]

client interface of type media_clock_if connected to the media clock
server

Type avb_srp_info_t

Description | Struct containing fields required for SRP reservations.

Continued on next page

Copyright 2016 XMOS Ltd. 39 WWW.Xmos.com
XM006850

XMOS

Fields unsigned stream_id
64-bit Stream ID of the stream

unsigned char dest_mac_addr
Stream destination MAC address.

short vlan_id
VLAN ID for Stream.

short tspec_max_frame_size
Maximum frame size sent by Talker.

short tspec_max_interval
Maximum number of frames sent per class measurement interval.

unsigned char tspec
Data Frame Priority and Rank fields.

unsigned accumulated_latency
Latency at ingress port for Talker registrations, or latency at end of
egress media for Listener Declarations.

unsigned char failure_bridge_id
Bridge ID of bridge that changed Talker Advertise to Talker Failed.

unsigned char failure_code
Failure code associated with the failure bridge.

Type srp_interface

Description | An interface used to register and deregister stream reservations via MSRP.

Functions
Function register_stream_request
Description Used by a Talker application entity to issue a request to the
MSRP Participant to initiate the advertisement of an available
Stream.
Type short

register_stream_request(avb_srp_info_t stream_info)

Parameters stream_info

Struct of type avb_srp_info_t containing parame-
ters of the stream to register

Continued on next gage

Copyright 2016 XMOS Ltd. 40 WWW.Xmos.com
XM006850

XMOS

Type srp_interface (continued)
Function deregister_stream_request
Description Used by a Talker application entity to request removal of the

Talker’s advertisement declaration, and thus remove the adver-
tisement of a Stream, from the network.

Type void
deregister_stream_request(unsigned stream_id[2])

Parameters stream_id two int array containing the Stream ID of the
stream to deregister

Function register_attach_request

Description Used by a Listener application entity to issue a request to attach
to the referenced Stream.

Type short
register_attach_request(unsigned stream_id[2],
short vlan_id)

Parameters stream_id two int array containing the Stream ID of the
stream to register

vlan_id the VLAN ID associated with the stream. If 0 the
current VID from the SRP domain will be used.

Function deregister_attach_request

Description Used by a Listener application entity to remove the request to
attach to the referenced Stream.

Type void
deregister_attach_request(unsigned stream_id[2])

Parameters stream_id two int array containing the Stream ID of the
stream to deregister

Function avb_srp_task

Description | SRP task that implements MSRP and MVRP protocols.
Can be combined with other combinable tasks.

Continued on next page

Copyright 2016 XMOS Ltd. 41 WWW.Xmos.com
XM006850

XMOS

Type [[combinable]]

void

avb_srp_task(client interface avb_interface i_avb,
server interface srp_interface i_srp,
client interface ethernet_rx_if i_eth_rx,
client interface ethernet_tx_if i_eth_tx,
client interface ethernet_cfg_if i_eth_cfg)

Parameters | i_avb client interface of type avb_interface into the avb_manager() for API con-
trol of the stack

i_srp server interface of type srp_interface that offers client tasks access to
SRP reservation functionality

i_eth_rx a client receive interface into the Ethernet MAC
i_eth_tx a client transmit interface into the Ethernet MAC

i_eth_cfg a client interface for Ethernet MAC configuration

Function avb_1722_1_maap_task
Description | A task that runs MAAP and 1722.1 ADP, ACMP and AECP protocols and interacts with

the rest of the AVB stack.
Can be combined with other combinable tasks.

Type [[combinable]]
void
avb_1722_1_maap_task(otp_ports_t & ?otp_ports,
client interface avb_interface i_avb,
client interface avb_1722_1_control_callbacks i_1722_1_entity,
f1_QSPIPorts & ?qgspi_ports,
client interface ethernet_rx_if i_eth_rx,
client interface ethernet_tx_if i_eth_tx,
client interface ethernet_cfg_if i_eth_cfg,
chanend c_ptp)

Continued on next page

Copyright 2016 XMOS Ltd. 42 WWW.Xmos.com
XM006850

XMOS

Parameters | otp_ports reference to an OTP ports structure of type otp_ports_t

i_avb client interface of type avb_interface into avb_manager()

i_1722_1_entity
client interface of type avb_1722_1_control_callbacks

gspi_ports
a reference to a Quad SPI flash ports structure

i_eth_rx a client receive interface into the Ethernet MAC
i_eth_tx a client transmit interface into the Ethernet MAC
i_eth_cfg a client interface for Ethernet MAC configuration

c_ptp chanend into the PTP server

Function gptp_media_clock_server

Description | The media clock server.

Type void

gptp_media_clock_server(
server interface media_clock_if media_clock_ct1,
chanend ?ptp_svr,
chanend(& ?buf_ct1) [num_buf_ct1],
unsigned num_buf_ctT,
out buffered port:32 p_fs[],
client interface ethernet_rx_if i_eth_rx,
client interface ethernet_tx_if i_eth_tx,
client interface ethernet_cfg_if i_eth_cfg,
chanend c_ptp[num_ptp],
unsigned num_ptp,
enum ptp_server_type server_type)

Continued on next page

Copyright 2016 XMOS Ltd. 43 WWW.Xmos.com
XM006850

XMOS

Parameters | media_clock_ct]
server interface of type media_clock_if connected to the avb_manager()
task

ptp_svr chanend connected to the PTP server
buf_ct1[] array of links to listener components requiring buffer management

num_buf_ct]1
size of the buf_ctl array

p_fs output port to drive PLL reference clock

i_eth_rx aclient receive interface into the Ethernet MAC

i_eth_tx a client transmit interface into the Ethernet MAC
i_eth_cfg a client interface for Ethernet MAC configuration

c_ptp[] an array of chanends to connect to clients of the ptp server
num_ptp The number of PTP clients attached

server_type

The type of the PTP server (PTP_GRANDMASTER_CAPABLE or
PTP_SLAVE_ONLY)

Function avb_1722_listener

Description | An AVB IEEE 1722 audio listener thread.

This thread implements a listener. It takes IEEE 1722 packets from the ethernet MAC
and splits them into output FIFOs. The buffer fill level of these streams is set in
conjunction with communication to the media clock server. This thread is dynamically
configured using the AVB control API.

Type void
avb_1722_1l1istener(streaming chanend c_eth_rx_hp,
chanend ?c_buf_ct1,
chanend ?c_ptp_ctl,
chanend c_Tlistener_ctl1,
int num_streams,
client push_if audio_output_buf)

Continued on next page

Copyright 2016 XMOS Ltd. 44 WWW.Xmos.com
XM006850

XMOS

Parameters | c_eth_rx_hp

a high priority client receive interface into the Ethernet MAC
c_buf_ctl buffer control link to the media clock server
c_ptp_ctl PTP server link for retrieving PTP time info

c_Tlistener_ct]l
channel to configure the listener (given to avb_init())

num_streams
the number of streams the unit will handle

audio_output_buf
a client interface to get a handle to push to the audio output buffer

Function avb_1722_talker

Description | An AVB IEEE 1722 audio talker thread.

This thread implements a talker, taking media input FIFOs and combining them into
1722 packets to be sent to the ethernet component. It is dynamically configured
using the AVB control API.

Type void avb_1722_talker(chanend c_ptp,

streaming chanend c_eth_tx_hp,
chanend c_talker_ctl1,

int num_streams,

client pull_if audio_input_buf)

Parameters | c_ptp link to the PTP timing server

c_eth_tx_hp
a high priority client transmit interface into the Ethernet MAC

c_talker_ctl
channel to configure the talker

num_streams
the number of streams the unit controls

audio_input_buf
a client interface to get a handle to pull from the audio input buffer

Copyright 2016 XMOS Ltd. 45 WWW.Xmos.com
XM006850

XMOS

3.6 Creating a gPTP server instance

All gPTP functions can be accessed via the gptp.h header:

#include <gptp.h>

Type

ptp_server_type

Description

The type of a PTP server.
Can be passed into the ptp_server() function.

Values

PTP_GRANDMASTER_CAPABLE
The port is capable of being both PTP Grandmaster and Slave role.

PTP_SLAVE_ONLY
The port is capable of PTP Slave role only.

Function

ptp_server

Description

This function runs the PTP server.
It takes one logical core and runs indefinitely.

Type

void

ptp_server(client interface ethernet_rx_if i_eth_rx,
client interface ethernet_tx_if i_eth_tx,
client interface ethernet_cfg_if i_eth_cfg,
chanend ptp_clients[],
int num_clients,
enum ptp_server_type server_type)

Parameters

i_eth_rx a receive interface connected to the Ethernet server
i_eth_tx a transmit interface connected to the Ethernet server
i_eth_cfg a client configuration interface to the Ethernet server

ptp_clients
an array of channel ends to connect to clients of the PTP server

num_clients
The number of clients attached

server_type
The type of the server (PTP_GRANDMASTER_CAPABLE or
PTP_SLAVE_ONLY)

3.7 Time data structures

Copyright 2016 XMOS Ltd. 46 WWW.Xmos.com

XM006850

XMOS

Type ptp_timestamp
Description | This type represents a timestamp in the gPTP clock domain with respect to the epoch.

Fields unsigned int seconds
The integer portion of the timestamp in units of seconds.

unsigned int nanoseconds
The fractional portion of the timestamp in units of nanoseconds.

3.8 Getting PTP time information

Type ptp_time_info

Description | This type is used to relate local xCORE time with gPTP time.
It can be retrieved from the PTP server using the ptp_get_time_info() function.

Type ptp_time_info_mod64
Description | This structure is used to relate local XCORE time with the least significant 64 bits of
gPTP time.

The 64 bits of time is the PTP time in nanoseconds from the epoch.
It can be retrieved from the PTP server using the ptp_get_time_info_mod64() function.

Function ptp_get_time_info

Description | Retrieve time information from the PTP server.
This function gets an up-to-date structure of type ptp_time_info to use to convert
local time to PTP time.

Type void
ptp_get_time_info(chanend ptp_server, ptp_time_info &info)

Parameters ptp_server
chanend connected to the ptp_server

info structure to be filled with time information

Function ptp_get_time_info_mod64

Description | Retrieve time information from the PTP server.
This function gets an up-to-date structure of type ptp_time_info_mod64 to use to
convert local time to PTP time (modulo 64 bits).

Continued on next page
. __|

Copyright 2016 XMOS Ltd. 47 WWW.Xmos.com
XM006850

XMOS

TSN 7.0.3

Type void
ptp_get_time_info_mod64 (chanend ?ptp_server,
ptp_time_info_mod64 &info)
Parameters ptp_server
chanend connected to the ptp_server
info structure to be filled with time information
Function ptp_request_time_info
Description | This function requests a ptp_time_info structure from the PTP server.
This is an asynchronous call so needs to be completed later with a call to
ptp_get_requested_time_info().
Type void
ptp_request_time_info(chanend ptp_server)
Parameters ptp_server
chanend connecting to the ptp server
Function ptp_request_time_info_mod64
Description | This function requests a ptp_time_info_mod64 structure from the PTP server.
This is an asynchronous call so needs to be completed later with a call to
ptp_get_requested_time_info_mod64().
Type void
ptp_request_time_info_mod64(chanend ptp_server)
Parameters ptp_server
chanend connecting to the PTP server
Function ptp_get_requested_time_info
Description | This function receives a ptp_time_info structure from the PTP server.
This completes an asynchronous transaction initiated with a «call to
ptp_request_time_info(). The function can be placed in a select case which will
activate when the PTP server is ready to send.
Type void
ptp_get_requested_time_info(chanend ptp_server,
ptp_time_info &info)

Continued on next page

Copyright 2016 XMOS Ltd. 48

WWW.XmMOos.com
XM006850

XMOS

Parameters ptp_server
chanend connecting to the PTP server
info a reference parameter to be filled with the time information structure
Function ptp_get_requested_time_info_mod64
Description | This function receives a ptp_time_info_mod64 structure from the PTP server.
This completes an asynchronous transaction initiated with a «call to
ptp_request_time_info_mod64(). The function can be placed in a select case
which will activate when the PTP server is ready to send.
Type void
ptp_get_requested_time_info_mod64(chanend ptp_server,
ptp_time_info_mod64 &info)
Parameters ptp_server
chanend connecting to the PTP server
info a reference parameter to be filled with the time information structure

3.9 Converting Timestamps

Function local_timestamp_to_ptp
Description | Convert a timestamp from the local xCORE timer to PTP time.
This function takes a 32-bit timestamp taken from an xCORE timer and converts it to
PTP time.
Type void
local_timestamp_to_ptp(ptp_timestamp &ptp_ts,
unsigned local_ts,
ptp_time_info &info)
Parameters | ptp_ts the PTP timestamp structure to be filled with the converted time
local_ts the local timestamp to be converted
info a time information structure retrieved from the PTP server
Function local_timestamp_to_ptp_mod32

Continued on next page

Copyright 2016 XMOS Ltd. 49 WWW.Xmos.com

XM006850

XMOS

TSN 7.0.3

Description | Convert a timestamp from the local xCORE timer to the least significant 32 bits of PTP
time.
This function takes a 32-bit timestamp taken from an xCORE timer and converts it to
the least significant 32 bits of global PTP time.
Type unsigned
Tocal_timestamp_to_ptp_mod32(unsigned local_ts,
ptp_time_info_mod64 &info)
Parameters | Jocal_ts the local timestamp to be converted
info a time information structure retrieved from the PTP server
Returns the least significant 32-bits of PTP time in nanoseconds
Function ptp_timestamp_to_local
Description | Convert a PTP timestamp to a local xCORE timestamp.
This function takes a PTP timestamp and converts it to a local 32-bit timestamp that
is related to the xCORE timer.
Type unsigned
ptp_timestamp_to_local(ptp_timestamp &ts,
ptp_time_info &info)
Parameters | ts the PTP timestamp to convert
info a time information structure retrieved from the PTP server.
Returns the local timestamp
Function ptp_timestamp_offset
Description | Calculate an offset to a PTP timestamp.
This function adds and offset to a timestamp.
Type void
ptp_timestamp_offset(ptp_timestamp &ts, int offset)
Parameters | ptp_timestamp
the timestamp to be offset; this argument is modified by adding the
offset
offset the offset to add in nanoseconds

Copyright 2016 XMOS Ltd. 50

WWW.XmMOos.com
XM006850

XMOS

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2016 XMOS Ltd. 51 WWW.Xmos.com
XM006850

XMOS

APPENDIX B - TSN library change log

B.1 7.0.3

e Bug fix in in media clock word length calculation

Resolved bug where media clock generation could lock up if PTP grandmaster transition happenned
while entering media clock lock state

Resolved bug where 1722 timestamp valid set incorrectly with respect to running DBC counter
Clamping negative pDelay value to zero rather than discarding it

Set CLOCK_SYNC_SOURCE flag in input stream descriptor

Fix build when PLL_OUTPUT_TIMING_CHECK enabled (#12)

Update to source code license

B.2 7.0.2

e Update to source code license and copyright

B.3 7.0.1

e XCORE-200 MC audio board XN link name changed to new format to support tools v14.0.4

B4 7.0.0

Library changed to new structure and tools 14 compatibility added

Support added for new version 3 of Ethernet library and Gigabit Ethernet on xCORE-200
Support added for new version 2 of 12S/TDM library

Audio buffering performance improvements for higher channel count applications
Support added for 1722.1 Enitity Firmware Upgrade (EFU) using new Quad SPI flash library
Support added for 1722.1 ACMP Fast Connect

Support added for 1722.1 AECP sample rate change via GET/SET_SAMPLING_RATE and GET/SET_STREAM_FORMAT
commands

Support added for 1722.1 AECP GET/SET_SIGNAL_SELECTOR commands
Current value fields in 1722.1 descriptors are now updated to reflect the current set value
Bug fix for gPTP number of lost reponses not being reset on link up event
Unimplemented 1722.1 commands now return the correct NOT_IMPLEMENTED status response
Resolved bug in 1722.1 ACMP disconnection caused by stream info not being zeroed
Changes to dependencies:

- lib_ethernet: Added dependency 3.0.3

- lib_gpio: Added dependency 1.0.0

- lib_i2c: Added dependency 3.1.1

- lib_locks: Added dependency 2.0.1

- lib_logging: Added dependency 2.0.0

- lib_otpinfo: Added dependency 2.0.0

- lib_xassert: Added dependency 2.0.0

Copyright 2016 XMOS Ltd. 52 WWW.Xmos.com
XM006850

XMOS

B.5 Legacy release history

B.6 6.3.1

e Bug fix for excessive Talker AVTP presentation time being absorbed in the FIFOs for a short period
at start

e Fixes regression in bad gPTP pdelay follow up detection
e Bug fix for reported base audio clusters in AEM stream descriptors

B.7 6.3.0

MEDIA_CLOCK_SOURCE bit now set in 1722.1 ADP Talker Capabilities
1722.1 GET_COUNTERS command added for CLOCK_DOMAIN descriptor
Minor bug fix in gPTP where multiple pdelay responses were not triggering AVnu specific behaviour
Change to SRP interface to allow SRP to control the joining of VLANs via MVRP
Max frame size reported by SRP changed to reflect the current set sample rate instead of the max
supported
e Changes to dependencies:
- sc_ethernet: 2.3.2rcO -> 2.3.3beta0
* Change to rounding of Qav slope calculation

B.8 6.2.2

e PTP clock accuracy is now reported to be within 25 ns by BMCA

e PTP offset scaled log variance is now set to the correct unkown value (0x436A) per IEEE P802.1AS-
Cor-1

e Grandmaster timeBaselndicator and lastGmFreqChange parameters are now set in the PTP sync fol-
low up TLV

e Pdelay exchanges are marked invalid and asCapable reset if the delay is measured as negative

e Fixed issue with lost PTP messages being counted twice, causing a premature asCapable reset

B.9 6.2.1

e Fix potential parallel usage violation on PTP client function

B.10 6.2.0

e Ethernet AVB server now configures auto-negotiation on the PHY
e State of MAAP and PTP now reset on link up of single port configuration
e Minor bug fixes to 1722.1 descriptors and commands

B.11 6.1.2

e Various minor SRP compliance fixes

B.12 6.1.1

e Various gPTP AVnu compliance fixes (June 2014 report)

B.13 6.1.0

e Support added for sw_avb_Ic single port reference design

Copyright 2016 XMOS Ltd. 53 WWW.Xmos.com
XM006850

XMOS

gptp.c moved to XC
Misc M*RP AVnu compliance fixes
gPTP AVnu compliance fixes
Changes to dependencies:
- sc_ethernet: 2.3.1rc0 -> 2.3.2rc0
» Updated timestamp adjustements for LAN8710A PHY to realistic values

B.14 6.0.7

e Changes to dependencies:
- sc_ethernet: 2.3.0rcO -> 2.3.1rc0
» Fix invalid inter-frame gaps.

B.15 6.0.6

e Reverted change to 1722 introduced in 6.0.3 that caused media clock to unlock

B.16 6.0.5

e Bug fix to prevent compile error when Talker is disabled
e Update to 1722 MAAP to fix non-compliance issue on conflict check

B.17 6.0.4

Updates design guide documentation to include AVB-DC details
SPI task updated to take a structure with ports

Bug fix on cd length of acquire command response

Added EFU mode and address access flags to ADP capabilities

B.18 6.0.3

e Firmware upgrade functionality changed to support START_OPERATION commands to erase the flash
e Several SRP bug fixes that would cause long connect/disconnection sequences to fail

B.19 6.0.2

e Interim release for production manufacture

B.20 6.0.1

e VLAN ID is now reported via 1722.1 ACMP
e Fixed XC pointer issue for v13.0.1 tools

B.21 6.0.0

e First release supporting daisy chain AVB
e Refactoring sw_avb modules into sc_avb

B.22 5.2.0

e Numerous updates to support xTIMEcomposer v12 tools, including updated sc_ethernet
e 1722.1 Draft 21 support for ADP, ACMP and a subset of AECP including an AEM descriptor set

Copyright 2016 XMOS Ltd. 54 WWW.Xmos.com
XM006850

XMOS

Old TCP/IP based Attero Tech application replaced with a 1722.1 demo

Added ability to arbitrarily map between channels in sinked streams and audio outputs
1722 MAAP rewritten to optimise memory and improve compliance to standard

AVB status API replaced with new weak attribute hooks

Support added for CS2100 variant of PLL

sc_xlog printing removed, replaced with XScope

Support removed for XDK/XAIl, XC-2 and XC-3 dev kits

Application support removed for Open Sound Control

B.23 5.1.2

PTP fix to correct step in g_ptp_adjust (commit #1548fa5ce?7)

Software support added for CS2100 PLL.

Media clock recovery PID tuned to decrease settle time and amplitude of oscillations
Fixes to app_xr_avb_lc_demo to work with channel counts < 8

Transport stream interface

1722/61883-4 packet encapsulation

Update to ethernet and tcp package dependencies

B.24 5.1.1

e Field update module added
e 12S slave functionality added

B.25 5.1.0

802.1Qat support

Partial (beta) 1722.1 support

Clock recovery corrections for 8kHz and >48kHz
1722 packet format corrections

1722 timestamp corrections

Stream lock/unlock more predictable

Test harnesses for various features

SRP state machine corrections

SRP state machine drives stream transmission

B.26 5.0.0

New control API

1722 MAAP support

Standard updates

Optimizations

See design guide for new release details

B.27 4.1.0

e Move to new build system

B.28 4.0.0

e Fixed missing functionality in media clock server

Copyright 2016 XMOS Ltd. 55 WWW.Xmos.com
XM006850

XMOS

e Small changes media server API - see demos for examples

e Optimized audio transport for local listener streams

e Major rewrite, many internal APIs changed, overall performance improvements

e Added gigabit ethernet support

e Added flexible internal routing (local streams) with simplified API, framework is much more powerful
for many-channel applications

e Rewritten audio_clock_recovery as more flexible media_clock_server

e Added demos for audio interface board

e Added 8-channel TDM audio interface

e Added uip IP/UDP/TCP server for adding configuration layer

e Various bug fixes

XMOS

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 56 WWW.Xmos.com
XM006850

	Time Sensitive Networking Library
	Ethernet AVB standards
	802.1AS
	802.1Qav
	802.1Qat
	IEC 61883-6
	IEEE 1722
	IEEE 1722.1

	Usage
	Ethernet MAC
	Precision Timing Protocol
	Audio components
	AVB streams, channels, talkers and listeners
	Internal routing and audio buffering
	Talker units
	Listener units
	Audio hardware interfaces

	Media clocks
	Driving an external clock generator

	Device Discovery, Connection Management and Control
	The control task
	1722.1
	1722.1 Descriptors
	Editing descriptors
	Adding and removing descriptors

	API
	Audio subsystem defines
	1722.1
	1722.1 application hooks
	AVB Control API
	Core components
	Creating a gPTP server instance
	Time data structures
	Getting PTP time information
	Converting Timestamps

	Known Issues
	TSN library change log
	7.0.3
	7.0.2
	7.0.1
	7.0.0
	Legacy release history
	6.3.1
	6.3.0
	6.2.2
	6.2.1
	6.2.0
	6.1.2
	6.1.1
	6.1.0
	6.0.7
	6.0.6
	6.0.5
	6.0.4
	6.0.3
	6.0.2
	6.0.1
	6.0.0
	5.2.0
	5.1.2
	5.1.1
	5.1.0
	5.0.0
	4.1.0
	4.0.0

